Nueva técnica de impresión 3D. Fabricación Granular Fusionada (FGF).

9 08 2018

Se ha presentado una nueva técnica dentro de la FFF (fabricación por filamento fundido), denominada como fanricación granular fucsionada (FGF).

Se define como un método de fabricación aditiva en el que los gránulos de plástico fundidos se depositan en una capa capa por capa para formar el objeto 3D.

El proceso

El producto está formado en una plataforma de construcción móvil [1]. Los gránulos de plástico se suministran a un tornillo de extrusión vertical que gira, calienta y presiona los gránulos hasta formar una masa plástica homogénea fundida. La masa se presiona a través de una boquilla reemplazable [4], donde el flujo se controla por el diámetro y la forma del paso. Un mayor rendimiento proporciona una mayor velocidad de construcción pero un acabado superficial más bajo y viceversa.

La masa plástica se deposita a través de la boquilla a velocidad constante y se crea una sección transversal del modelo CAD. Después de cada capa, la plataforma de construcción se baja [5] y se agrega la siguiente capa.

Si es necesario, también se imprime una estructura de soporte [6] para permitir voladizos. Se requiere un procesamiento posterior en forma de eliminación de estas estructuras de soporte.

Fused Granular Fabrication (FGF)

 

UTILIZA TU PROPIO MATERIAL

Como usamos la tecnología de impresión FGF e imprimimos usando Gránulos, podemos imprimir usando su material específico.

Si no tiene un material usted mismo o está buscando algo nuevo, podemos proporcionarlo.

Estos son algunos de los materiales que nosotros y nuestros clientes imprimimos utilizando nuestras máquinas:

abs (Acrilonitrilo butadieno estireno)

ABS es un material fuerte con baja contracción y muy buena capacidad de procesamiento posterior.

ABS también se puede combinar con fibra de carbono , fibra de vidrio , bolas de vidrio , madera , metales y muchos otros compuestos.

El procesamiento posterior incluye fresado CNC, lijado, corte, pintura y más.

Polipropileno

PP es un material muy resistente con una larga vida útil y una buena capacidad de procesamiento posterior.

PP también se puede combinar con fibra de carbono , fibra de vidrio , bolas de vidrio , madera , metales y muchos otros compuestos.

El procesamiento posterior incluye fresado CNC, corte y más.

PCL ( Polycaprolactone)

PCL es un poliéster biodegradable con un bajo punto de fusión.

TPU ( Poliuretano termoplástico)

TPU es un material muy fuerte y flexible con una larga vida.

Las características de TPU son similares al caucho.

PE (Polietileno)

PE es un material muy resistente con una larga vida útil y una buena capacidad de procesamiento posterior.

PE también se puede combinar con fibra de carbono , fibra de vidrio , bolas de vidrio , madera , metales y muchos otros compuestos.

El procesamiento posterior incluye fresado CNC, corte y más.

TPE (Elastómeros termoplásticos)

TPE es un material fuerte y flexible.

Las características de TPE son similares al caucho.

PET (tereftalato de polietileno)

El PET es un material muy duro con una larga vida.

El PET también se puede combinar con fibra de carbono , fibra de vidrio , bolas de vidrio y muchos otros compuestos.

El procesamiento posterior incluye fresado CNC, corte y más.

PLA (ácido polilactico)

El PLA es un material con muy baja contracción.

PLA también se puede combinar con fibra de carbono , fibra de vidrio , bolas de vidrio , madera ,   metales y muchos otros compuestos.

El procesamiento posterior incluye fresado CNC, corte, pintura y más.

PC (Policarbonato)

PC es un material resistente a los impactos (vidrio a prueba de balas).

PC también se puede combinar con fibra de carbono , fibra de vidrio , bolas de vidrio , madera ,   metales y muchos otros compuestos.

El procesamiento posterior incluye fresado CNC, corte, pintura y más.

MASTERBATCH

Los colores se pueden agregar a todos los materiales

El masterbatch de color se mezcla con los gránulos normales al 2-5% para colorear todo el material.




Nuevas publicaciones sobre prototipos

20 07 2018

Acaban de salir las publicaciones que hemos realizado sobre prototipado e ingenieria inversa. Disponibles en la editorial de la UPV.

http://www.lalibreria.upv.es/portalEd/UpvGEStore/control/main




Modelo 3D desde videos captura desde un dron.

20 06 2018

Modelo 3D desde videos captura desde un dron. Os muestro que después de extraer los fotogramas del video, se montan con el Autodesk Recap y se puede hacer el montaje final como se muestra en el video.

El video original es




Instalación de la máquina de corte láser Trotec r500 – Design Factory EPSA

16 06 2018

Se ha instalado en la EPSA, el sistema de corte láser con unas características definidas como sigue:

Superficie de trabajo 1300 x 900 mm; Láseres de 60 – 120 W CO2 DC.

Para todos los tamaños de hoja estándares hasta 1300 x 900 mm; Corte y grabado de acrílicos de hasta 15 mm, madera hasta 15 mm, textiles, papel. Para carteles, regalos, juguetes, decoración, modelos, prototipos o moda.

Controlador de impresora Rayjet Commander; ​Software para láser Rayjet Manager incluyendo base de datos de materiales; Panel de control para posicionar el láser

El láser funcionando en la primera prueba:

El tutorial para generar los códigos de corte y grabado:

 




Defensa de tesis en la Universitatea din Oradea

28 05 2018

El pasado 24 de mayo, pudimos asistir a la defensa de una tesis doctoral en la Universitatea din Oradea (Rumanía). El tesinando Endrowednes Kuantama (Indonesia, Erasmus Mundus), expuso la tesis titulada ” Contribution Regarding The Design And Experimental Development Of Sniffer Quadcopter“, dirigida por el Prof. Dr. Ing. Radu Tarca.

Despues pudimos hacer algo de turismo por el centro, la ciudadela de Oradea y la catedral de Timisora

 




Jornadas Activa tu Futuro de la UPV-Taller de piezas 3D de automoción

11 05 2018

Desde el CFP se han organizado las Jornadas Activa tu Futuro de la UPV, con actividades de los diversos títulos propios. Nosotros participamos esta mañana a las 10 con un taller de piezas 3D de automoción a cargo de Santi Ferrandiz.

Nuestro alumno Oscar Morera.




Impresión 3D en la nueva motocicleta de BMW

9 05 2018
Fuente:https://www-3dnatives-com.cdn.ampproject.org/c/s/www.3dnatives.com/es/3d-motocicleta-de-bmw-080520182/amp/

Autora: Lucía C. :Comunicadora audiovisual y diseñadora. Master en Dirección de arte (CICE) y Diplomado en Diseño y Comunicación Multimedia (TAI). Motivada por los nuevos retos, especialmente en el campo de la comunicación. En constante descubrimiento de las innovaciones en impresión 3D. Amante del cine y el buen diseño.

motocicleta de bmw

El fabricante de automóviles BMW ha presentado uno de sus últimos proyectos relacionados con el uso de fabricación aditiva, el prototipo de su nueva motocicleta, la S1000RR. Incorporará un chasis impreso en 3D pero también un brazo oscilante diseñado con tecnologías 3D. Una iniciativa que permitiría a la empresa alemana desarrollar piezas más rápidas y eficientes, dos puntos clave en el sector automotriz. La motocicleta de BMW se une a los muchos vehículos que tienen partes impresas en 3D y ha visto mejorar su rendimiento.

BMW hace unos días la apertura de un nuevo centro dedicado a la fabricación aditiva, que representa una inversión de 10 millones de euros para integrar las tecnologías 3D en su ciclo de producción, apertura que marcó la pauta para a las próximas ambiciones del fabricante. Desde que invirtió en una impresora HP Multi Jet Fusion en 2016, BMW ha comenzado a rediseñar sus autos con partes impresas en 3D, como su modelo i8 Roadster, con geometrías más complejas.

Motocicleta de BMW

El chasis impreso en 3D de la motocicleta de BMW (creditos de la foto: Visor Down)

Una motocicleta de BMW con diseño orgánico

En el Digital Day organizado por BMW Group en España, el fabricante reveló su último proyecto, la motocicleta S1000RR, aún en fase de prototipo. Tiene un chasis y un brazo oscilante impresos en 3D. BMW explicó que ha utilizado una tecnología de fusión de láser selectivo para crear estas formas orgánicas. Un resultado que se ha logrado gracias a la optimización topológica que elimina todas las piezas no sujetas a esfuerzos y por lo tanto ofrece una reducción de materiales y costos. El prototipo obtenido nos recuerda a la Light Rider, la motocicleta creada por APWorks cuyo peso se redujo enormemente gracias a la fabricación aditiva. Utiliza también un diseño orgánico y fluido que da un aspecto un pequeño vehículo futurista.

BMW afirma que “las piezas impresas en 3D ofrecen un alto grado de libertad de diseño y se fabrican rápidamente, siempre con un alto nivel de calidad. No necesitamos herramientas de fabricación tradicionales como moldes de fundición; ahora todo está digitalizado. “Aunque el fabricante aún no está listo para lanzar una motocicleta completamente impresa en 3D, está convencido del potencial de la tecnología, especialmente para todo lo relacionado con la personalización de los vehículos.

Motocicleta de bmw

(Creditos de la foto: Visor Down)

Encuentra toda la información sobre la nueva motocicleta de BMW aquí.




ANSYS MESHING – CutCell

8 05 2018

Fuente: https://cfd.ninja/ansys-meshing-cutcell/

 Autor: CFD.NINJA

Source: CutCell

The ANSYS Meshing application allows you to generate CutCell meshes, in order to reduce the time needed to mesh complex geometry. This functionality was originally developed for ANSYS Fluent, but it is also compatible with Polyflow applications. The CutCell mesher converts a volume mesh into a predominantly Cartesian mesh (that is, the mesh consists of mostly hexahedral elements, with faces that are aligned with the coordinates axes). Smaller elements are used to resolve complex details of the geometry, and the interfaces between the different size elements are non-conformal.

Note that the Polyflow solver will reconnect adjacent elements of different discretization sizes with conformity constraints, in the same manner as the recursive subdivision of elements technique used for adaptive meshing

Download File: Airplane CutCell

Important:  Note the following when working with CutCell meshes:

  • For flow applications, you must carefully check the generated mesh in order to avoid thin regions in which only one element exists between opposite walls. If such situation occurs, all velocity nodes of such elements have fixed (and generally) null values (that is, a fixed wall condition): no fluid will cross these elements, leading to artificial obstacles in the flow.
  • You must not combine (for example, using ANSYS Polyfuse) a mesh that was generated by the CutCell method with another type of mesh, if you intend to use it in an ANSYS Polyflow simulation; ANSYS Polyflow requires that the mesh you read in consists of a domain in which either every part or no part is a CutCell mesh. Consequently, you cannot use an unaltered CutCell mesh with moving boundaries (for example, in a free jet region outside of an extrusion die), as the remeshing algorithms require a sliceable mesh, which is typically a swept mesh. To overcome this limitation, you can use Polydata to convert a portion of your CutCell mesh into a sliceable mesh, as described in the Polyflow User’s Guide.
  • CutCell meshes are not compatible with mixing or volume of fluid (VOF) tasks, viscoelastic flow sub-tasks



El hospital donde imprimen corazones de niños en 3D

7 05 2018

Por Maruxa Ruiz del Árbol | 06-05-2018

fuente: https://elfuturoesapasionante.elpais.com/alder-hey-el-hospital-donde-imprimen-corazones-de-ninos-en-3d/

 

 




El escaneo 3D como salvavidas para el patrimonio destruido, saqueado y abandonado

29 04 2018

Fuente: https://www.eldiario.es/cultura/arte/OpenHeritage-patrimonio_0_765374374.html

Autor:

“Estos escaneos capturan cada edificio u objeto con precisión milimétrica en 3D, y cuando se superponen con imágenes proporcionan una recreación precisa de la forma, el tamaño, el color y la textura”, explican desde Google a eldiario.es. El proyecto  Open Heritage nace en colaboración con la ONG CyArk, fundada por Ben Kacyra, previamente responsable de una empresa de tecnología para el sistema de escaneo láser 3D, para crear un archivo digital de libre acceso destinado a la preservación o la educación.

Todo comenzó en 2001, después de que los budas de Bamiyán (Afganistán) quedaran reducidos a gravilla tras ser dinamitados por los talibanes. Como Kacyra menciona en una charla TED de 2011, la reconstrucción total de estos resultaba imposible porque los arquitectos no tenían datos suficientes para volver a unir los añicos de aquellas figuras de 55 metros. Tras aquel incidente, el empresario decidió utilizar CyArk para la “preservación digital de sitios patrimoniales” con la ayuda de su tecnología y, ahora, con la de Google.

Escaneo 3D de una iglesia en San Antonio (EEUU)
Escaneo 3D de una iglesia en San Antonio (EEUU) CyArk

La multinacional estadounidense apunta que el proceso aún requiere “un tiempo y esfuerzo considerable”, pero que el escaneo 3D “no solo es mucho más rápido y preciso que los métodos tradicionales, sino que también es menos intrusivo”. Gracias al uso de dispositivos como drones, sostienen que pueden “tomar miles de fotos aéreas de cada sitio sin tener que construir andamios o irrumpir edificios de ninguna manera”.

De momento, en su página web ya tienen registrados 27 patrimonios de 18 países distintos, incluyendo Chichén Itzá en México, el Palacio de Azm en Siria o la Puerta de Brandeburgo en Alemania. “Esta lista inicial fue seleccionada según el deseo de mostrar una amplia gama de tipos de patrimonio cultural en todo el mundo. Esperamos agregar más sitios a lo largo del tiempo a la colección”, aclara el gigante tecnológico.

Sin embargo, el criterio empleado para la selección no parece tener demasiada coherencia para Pedro Lavado, experto en arqueología que trabajó en Instituto del Patrimonio Cultural de España (IPCE): “Me parece una propuesta de ricos. Tendría más sentido hacer esto en países en peligro y con cierta problemática”. Al especialista le llama la atención que “no estén sitios como Nepal, donde suelen ser habituales los terremotos” y que la mayor parte de los disponibles sean de Europa o Norteamérica.

“Hay monumentos que no creo que vayan a desaparecer, más que nada se acabarán deteriorando, como la torre de Londres o la Puerta de Brandeburgo”, aprecia Lavado, a quien la iniciativa le parece “muy bien”, pero cree que “debería gastarse dinero en proyectos que puedan ser más aprovechados y que implique a monumentos realmente al borde de la desaparición”.

Esa cifra, según revela a este periódico Elizabeth Lee, vicepresidenta de desarrollo de CyArk, asciende a “unos 50.000 dólares” y permite “tener un equipo de 2 o 3 personas durante dos semanas para hacer el procesamiento de datos”. Para conseguirlo, la directiva señala que trabajan “en coordinación con las autoridades del lugar” para garantizar que se alinee “con las prioridades locales” y se pueda realizar de “manera segura”.

“Imagino que es una cuestión de recursos: es mucho más sencillo disponer de personal y medios técnicos en Italia o Alemania, que en zonas de conflicto”, comentan Silvia Verdú y Ana Valverde,  profesoras de la UNED especializadas en digitalización del patrimonio cultural. Continúan diciendo que sí existen otras iniciativas, como Rekrei o Curious Travellers, en las que los voluntarios envían fotografías de monumentos ya desaparecidos o en riesgo de hacerlo.

¿Se puede reconstruir el daño de un terremoto?

Los datos de Open Heritage, según Google, “son tan precisos que se pueden compartir con los equipos de restauración como planos para ayudar en la reconstrucción”. Pero, ¿se han empleado en casos reales? La multinacional estadounidense asegura que fueron de utilidad con los 185 templos de Bagan (Birmania), dañados en 2016 tras un terremoto.

“Al comparar los datos de antes y después del terremoto, CyArk pudo identificar los daños, incluidos los ladrillos individuales y extraviados, y posteriormente proporcionar registros detallados para la reconstrucción”, garantiza la compañía norteamericana. Pero aquel desastre natural no ha sido el único en Bagan. Previamente, en 1975, otro terremoto devastó la zona causando, según el  New York Times, “un daño irreparable” en gran parte de los santuarios. En realidad sí que los repararon, pero introduciendo cambios sustanciales con respecto a su versión original.

Precisamente por ello, Lavado insiste en los problemas relacionados con el nivel de la catástrofe: “En el caso de Bagan son centenares de elementos de los que poco ha quedado tras los terremotos. Si arreglan uno, es uno sobre los 200 o 300 que se han destruido en el mismo sitio”. Otro ejemplo que aparece en Open Heritage es el palacio Al Azem de Damasco, el cual, según el experto en patrimonio, debe estar “machacado, triturado, igual que lo está la Ciudadela de Alepo”.

Google también incide sobre los diferentes fenómenos que dificultan la preservación de las obras: “Cada sitio de patrimonio enfrenta una combinación única de amenazas que hacen que la preservación sea más desafiante”. Amenazas que, según señalan, van desde “el turismo de masas en Pompeya” hasta los “patrones climáticos extremos en el Fuerte de San Lorenzo, de Panamá”. También el terrorismo cultural, empleado por grupos terroristas como el ISIS para conseguir atención mediática y evidenciar la falta de estrategias preventivas para el rescate de los patrimonios.

En la misma línea se sitúan las docentes de la UNED, para quienes “todos estos aspectos son perjudiciales, pero sin duda alguna, los conflictos bélicos destruyen de manera más efectiva y rápida que cualquier otro medio”.

Por otro lado, a pesar de que en pleno 2018 se haya decidido digitalizar ciertos lugares simbólicos, hay que tener en cuenta los múltiples arreglos que los monumentos han recibido a lo largo de la historia. Porque, quizá, lo que ahora se esté tomando como referencia no sea la construcción original, sino un cúmulo de elementos agregados a posteriori. “Las grandes catedrales del norte fueron machacadas durante la Revolución francesa, entonces, ¿hasta qué punto la imagen que ahora tenemos es real o una que nos hemos acostumbrado a ver”, añade el extrabajador del IPCE.

Entonces, ¿tiene sentido digitalizar el patrimonio? Verdú y Valverde creen que esto aporta dos aspectos fundamentales. El primero, es “el valor añadido que supone el propio uso de la tecnología”, ya sea por el nivel de realismo o por el estudio detallado de recursos originales “dejando atrás la técnica invasiva del moldeado de escayola”. El segundo, es la “la efectividad de su difusión”, ya que utiliza un canal fundamental para llegar a todos lados: Internet.

Open Heritage anima a explorar lugares icónicos a través de modelos 3D que no escatiman en la fidelidad de sus detalles, ya sea un templo de Bagan o la Puerta de Brandeburgo. Aun así, como suele ocurrir, la historia no se escribe igual para todos. “¿Por qué no está España?”, se pregunta Lavado.

Miembros de CyArk escaneando el Templo Mayor de México
Texto integro de eldiario.es