El escáner 3D Ciclop es un proyecto 100 % libre. Al igual que todos los productos que forman parte del ecosistema DIY de BQ, Ciclop y Horus tienen licencia CC-BY-SA y GPL. Toda la información sobre el diseño mecánico, la electrónica y el software están disponibles para la comunidad pasando a pertenecer al Patrimonio Tecnológico de la Humanidad.El objetivo no es solamente que sea posible estudiar y entender el funcionamiento del escáner, queremos que la comunidad se involucre, realice modificaciones, mejoras y evoluciones a partir de Horus. Apostamos por el libre conocimiento y queremos con ello contribuir e impulsar el desarrollo de estos dispositivos.
Los diccionarios tecnológicos tienen que ir haciendo hueco a un nuevo término: la bioimpresión. Usando una impresora 3D creada por ellos, un grupo de especialistas en medicina regenerativa de EE UU ha demostrado la viabilidad de tejidos vivos impresos. Con el mismo sistema imprimieron huesos, cartílagos y músculos que después implantaron en modelos animales. En un porcentaje superior al 90%, las estructuras impresas regeneraron el tejido, creando su propio sistema vascular.
La ingeniería de tejidos es una de las grandes promesas de la medicina regenerativa. En un futuro, tras escanear la zona u órgano dañada, un programa modelará la estructura y tejidos a imprimir y una impresora 3D que usa células en vez de tinta obrará el milagro. Ya hay empresas que comercializan tejidos celulares sacados por la impresora, como Organovo. Pero restaurar una parte del cuerpo defectuosa o dañada por un accidente exige una tecnología que aún no ha llegado pero que la ciencia está acercando paso a paso.
El último de estos avances lo ha dado el grupo de investigación en medicina regenerativa del Centro Médico Baptista Wake Forest (Winston-Salem, EE UU). Dirigidos por Anthony Atala, han creado una impresora de material vivo o bioimpresora. Su nombre o siglas es ITOP, o sistema integrado de impresión de tejidos y órganos, en inglés. El artilugio es algo aparatoso, pero no más que otras impresoras 3D de uso industrial. Pero ITOP imprime estructuras vivas en vez de cosas.
«Esta nueva impresora de tejidos y órganos es un importante avance en nuestro objetivo de crear tejido de reemplazo para los pacientes, dice en una nota el doctor Atala, que ya hace unos años consiguió crear cartílago con una impresora de inyección de tinta. Ahora han perfeccionado el sistema. «Puede fabricar tejidos a escala humana de cualquier forma y estables. Con su desarrollo, esta tecnología podría usarse para imprimir estructuras de tejidos y órganos para su implantación quirúrgica», añade.
En 2012, este equipo de investigadores imprimió cartílago con una impresora de inyección
ITOP parte de aquellos primeros trabajos. La impresora realiza un doble proceso. Por un lado, usa polímeros para recrear una matriz con la estructura básica del tejido a imprimir. Por el otro, sobre esa estructura inyecta un hidrogel enriquecido con las células de interés. Por ejemplo, precursores de las fibras musculares, mioblastos, para imprimir un músculo, o condrocitos si lo que se trata es de crear una oreja u otro tejido cartilaginoso. Los investigadores usaron también células madre procedentes de líquido amniótico humano como base para imprimir una mandíbula o una porción del cráneo.
El principal problema hasta ahora en este punto del proceso era conseguir que el biomaterial impreso no solo se mantuviera vivo, sino que sirviera de base para que las células proliferaran a lo largo de la estructura. Según los resultados de su investigación, publicada en Nature Biotechnology, tanto las células usadas para el tejido muscular, como los de huesos o las de la oreja seguían vivas seis días después de su impresión y habían iniciado procesos de proliferación celular.
Lo siguiente fue probar su viabilidad tanto estructural como funcional. Cada una de las impresiones fue implantada en diferentes modelos animales, ratas y ratones. En los cuatro casos, la supervivencia celular superó el 90% y en todos ellos, los tejidos impresos fueron capaces de proliferar, generando nuevo tejido. Una de las claves para esta regeneración parece haber sido la inclusión de microcanales dentro la estructura impresa que, como si fuera un sistema vascular propio, permitieron la circulación del oxígeno y los nutrientes.
«Nuestros resultados indican que la formulación de biotintas que hemos usado, combinado con los microcanales, ofrece el ambiente adecuado para mantener las células vivas y soportar el crecimiento celular y de los tejidos», explica Atala. Aún queda lo más difícil, repetir estos resultados con humanos. Pero el Ejército de EE UU, que es el que ha financiado esta investigación por sus grandes posibilidades con los heridos de guerra, está decidido a que la impresora de huesos sea una realidad.»
Una pasada.
Comments : Comentarios desactivados en Una impresora 3D crea huesos, músculos y cartílagos
Once again we’re proud to announce a new member in our growing family of 3D printing materials. After offering 3D printing in gold, silver, ceramics, and even wood, we can now let you create and order 3D prints in our 19th material as of today: copper!
Introducing 3D Printed Copper
Today, for the first time ever, you have the chance to get your design 3D printed in copper with i.materialise! Copper is an affordable metal with a very high thermal and electrical conductivity. Watch the video above to see it with your own eyes!
Copper is used a variety of objects: typically, wires, cables, and parts of electronic items are made of copper since this material is such a great conductor. It is also often used for tubes, door knobs, handles, and coins since it does not attract bacteria. Besides, copper is known to be found in architecture, household items, art, medals, and jewelry.
Colors and Finishes for Copper
Copper has a reddish color by nature. Your model is polished magnetically and by hand. You have the option of coating your copper model against scratches with a clear PU coat. This coat will also slow down corrosion but it won’t prevent oxidation in the long run as the material is very sensitive. Visually, there is no real difference between uncoated and PU-coated parts at first. When corrosion starts to happen, the difference will become apparent and a greenish verdigris or tarnish (patina) will become visible.
Designing for Copper
Have you already designed something for our gold, silver, bronze, or brass materials? Then there’s another bit of good news: the design specifications for copper are exactly the same. Minimum wall thickness (0.5 mm), minimum details (0.3 mm), and maximum printing size (88 x 63 x 125 mm) won’t change. Click here to find out more about the design specification for printing in copper.
The Technology behind a Copper 3D Print
This is due to the fact that the technology for printing in gold, silver, bronze, brass, and copper is the same: a mix of lost wax casting and 3D printing. First, a wax cast of your item is 3D printed and then covered in fine plaster. When the plaster solidifies, it is placed in an oven and heated to a point where the wax is completely melted out. The metal is then poured into the empty cast and your real 3D printed metal item is created. In the final step the item is finished manually. Click here if you want to find out more about the technological aspects of printing with copper.
Lost wax casting & 3D printing is used for a variety of metals, including silver, gold, brass, bronze … and copper!
Do you feel like creating a 3D print in copper now? Make sure you check out our material page about copper first to learn more about it. Upload your model here to order your 3D printed copper item today, or visit this page to compare it with the 18 other 3D printing materials we offer.
Comments : Comentarios desactivados en Impresiones 3D en cobre
Here are some basic rules, tips, and tricks to design a printable model in Ceramics.
Design Specifications
Minimum Wall Thickness3 – 6 mm
Minimum Details2 mm
Accuracy±3%, adds 1 mm of glaze
Maximum Size340 x 240 x 200 mm
Clearance4 mm
Interlocking or Enclosed Parts?No
Basic Rules, Tips and Tricks
Wall Thickness
In 3D Printing, wall thickness refers to the distance between one surface of your model and the opposite sheer surface.
Wall thickness defines the strength of your model; therefore, the minimum wall thickness of your design will be defined by the size of your model. In general, larger models need to be stronger. If the sum of the dimensions of your model is between 120 and 200 mm, you should use walls that are at least 3 mm thick. When the sum of the dimensions is greater than 201 mm but smaller than 300 mm, a minimal wall thickness of 4 mm is recommended. When the sum is larger than 301 mm but below 400 mm (above 400 mm is not printable), the walls should have a minimum thickness of 6 mm. These minimum values are a general guide but keep in mind that large pieces should have thick walls. Clicking on the image on the left will show you a small overview of the values we described above.
The maximum wall thickness is a lot easier. If your walls stay below 15 mm in thickness, you will be fine. Thicker sections will generate too much internal stress, causing the item to crack or even break.
Minimum and Maximum Size
Because of the machine size and the way ceramics are processed, we need your design to meet a minimum size as well as be smaller than the maximum size. The minimum size is set because smaller items are more difficult to glaze. The maximum size is defined by the maximum building volume of the machine for the characteristics of the material.
Unlike other technologies where a specific bounding box is given, ceramics requires you to do some math and add up the three dimensions of your model. If the sum of the X, Y and Z dimensions is between 120 and 400 mm, your model is good for printing. Models where the sum is below 120 mm or exceeds 400 mm are not possible at the moment. The maximum dimension in any one direction is limited to 340 mm because of limitations in the machine size (340 x 240 x 200 mm).
It’s easier to make a thicker piece than a really thin one and we want your design to fill up at least 5% of the bounding box. Thicker pieces cause fewer problems during production and transport because they’re less breakable. You might think that this minimum fill percentage drastically increases the price but, unlike other technologies, the price for ceramics is determined by the surface area. This means that you don’t get penalized for using a larger wall thickness as you would with other 3D Printing techniques.
Minimum Feature Size
A feature should have a minimum size of 2 mm to come out nicely. The glazing reduces the definition of features because it adds an additional layer of up to 1.5 mm on top of the piece.
Overhang Size
It’s important to design your model with limited overhangs. Overhangs are features that stick out from your model. Make sure to limit the overhangs to 20 mm for sections with a wall thickness of 3 mm, 50 mm for sections with a wall thickness of 4 mm, and 90 mm for sections with a wall thickness of 6 mm.
Rounded Corners
For an even application of the glaze, avoid sharp edges as much as possible. We recommend applying a fillet with a minimum radius of 2.0 mm to sharp corners. Also, any joining faces should have a minimum radius of 2.0 mm.
Minimum Feature Opening
Because of the glazing process, openings that are too small can get sealed by the glaze. Therefore, the minimum feature opening size is 5.0 mm. For hollow parts, the part must include an opening for powder removal that is at least 10 mm in diameter. Enclosed areas might be missed during glazing since it will not be able to reach these areas, so it is important to make sure that any openings are large enough so the glaze can be applied.
The Necking Effect
Try to avoid the so-called necking effect, where your design goes from a thick area to a thin one. This will create internal forces in your design that could cause the model to break during production or afterwards.
Thin struts cannot be attached to large unsupported sections. To avoid problems, try to imagine what will happen when gravity is applied to your design. This explains why large sections should be lower in the part and cantilevered struts should be less than 20 mm long. For example, with figurines, make sure the head is firmly attached to the body and that the model is stable and has a base.
To Glaze or Not to Glaze
In order to apply the glazing, a model needs to have an obvious base. This is because your design will have to stand or rest inside of the firing oven to become strong and receive glaze. Without a base, you will end up with an area where no glazing will be applied. In some cases your model can be hanged during the process but this will still leave a strip of unglazed ceramic.
Glazing (thickness)
Glaze will add thickness to features and can add up to a maximum of 1.5 mm in thickness. However, because of the nature of glazing, some geometries may cause uneven distribution of the glaze. An example of this is the bottom of the inside of a cup where the glaze will be thicker than on the sides.
Clearance
Unlike polyamide, it’s impossible to have moving parts in a ceramic design. Pieces that «fit» together are difficult, but if you must build this into your design, please keep a clearance of 4 mm.
Engraved Text and Surface Details
When placing embossed text on your design, the minimum point size for raised text is 36 points or 12.7 mm (0.5 inch), and it must stick out by at least 2 mm. For engraved text, your text will need to be a little larger to take into account the thickness of the glazing. We recommend a minimum size of 60 points or 21.2 mm (0.83 inch) for engravings, with a depth of at least 3 mm.